Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport

نویسندگان

چکیده

We develop a neuroevolution-potential (NEP) framework for generating neural network based machine-learning potentials. They are trained using an evolutionary strategy performing large-scale molecular dynamics (MD) simulations. A descriptor of the atomic environment is constructed on Chebyshev and Legendre polynomials. The method implemented in graphic processing units within open-source GPUMD package, which can attain computational speed over $10^7$ atom-step per second one Nvidia Tesla V100. Furthermore, per-atom heat current available NEP, paves way efficient accurate MD simulations transport materials with strong phonon anharmonicity or spatial disorder, usually cannot be accurately treated either traditional empirical potentials perturbative methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

willingness to communicate in the iranian context: language learning orientation and social support

why some learners are willing to communicate in english, concurrently others are not, has been an intensive investigation in l2 education. willingness to communicate (wtc) proposed as initiating to communicate while given a choice has recently played a crucial role in l2 learning. it was hypothesized that wtc would be associated with language learning orientations (llos) as well as social suppo...

construction and validation of translation metacognitive strategy questionnaire and its application to translation quality

like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...

Deriving effective mesoscale potentials from atomistic simulations

We demonstrate how an iterative method for potential inversion from distribution functions developed for simple liquid systems can be generalized to polymer systems. It uses the differences in the potentials of mean force between the distribution functions generated from a guessed potential and the true distribution functions to improve the effective potential successively. The optimization alg...

متن کامل

Machine Learning methods for interatomic potentials: application to boron carbide

Total energies of crystal structures can be calculated to high precision using quantumbased density functional theory (DFT) methods, but the calculations can be time consuming and scale badly with system size. Boron carbide exhibits disorder in the distribution of boron and carbon atoms among the crystallographic sites. A cluster expansion of the DFT energy in a series of pairs, triplets, etc. ...

متن کامل

on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing

این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.104.104309